

Loctite 5800

Laboratory Data Sheet, October 2011

PRODUCT DESCRIPTION

LOCTITE 5800 provides the following product characteristic:

Technology	Acrylic	
Chemical Type	Dimethacrylate ester	
Apperance (uncured)	Red viscous liquid LMS	
Flourescence	Positive under UV light LMS	
Components	One Component - requires no mixing	
Viscosity	High	
Cure	Anaerobic	
Secondary Cure	Activator	
Application	Flange sealing	
Strength	Medium	

LOCTITE® 5800 is a single component, medium strength, anaerobic sealant which cures when confined in the absence of air between close fitting metal surfaces. Typical applications include sealing close fitting joints between rigid metal faces and flanges. The product provides resistance to low pressures immediately after assembly of flanges. Typically used as a form-in-place gasket on rigid flanged connections, e.g. gearbox and engine casings, etc.

LOCTITE® 5800 is part of the Health & Safety anaerobic range. The product is label free. There are no risk or safety phrases associated with either the formulation or its ingredients.

TYPICAL PROPERTIES OF UNCURED MATERIAL

Specific Gravity @ 25 °C 1.1

Flash Point - See MSDS

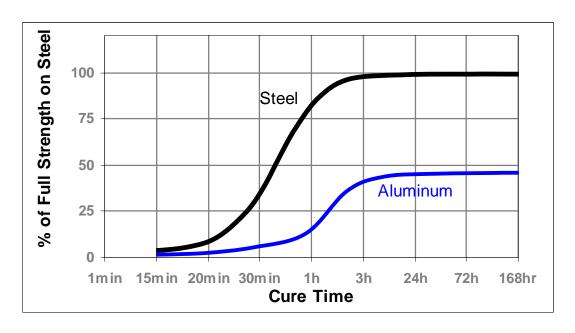
Viscosity, Haake – RV1, 25°C, mPa⋅s (cP): 11,000 to 32,000 to 32,

C35/2° Ti, 20s-1

Viscosity, Brookfield - HBT, 25 °C, mPa·s (cP): 150,000

Spindle TC, speed 5.0 rpm, Helipath

Instant Sealing Capability


Anaerobic sealants have the ability to resist low on-line test pressures while uncured. This test was performed with uncured product immediately after assembly of an annular polycarbonate sealing surface with an internal diameter of 50 mm and an external diameter of 70 mm.

Pressure Resistance, MPa:	
Induced Gap 0.05 mm	0.08
Induced Gap 0.125 mm	0.03
Induced Gap 0.25 mm	0.01

TYPICAL CURING PERFORMANCE

Cure Speed vs. Substrate

The rate of cure will depend on the substrate used. The graph below shows the shear strength developed with time on grit blasted steel lap shears compared to different materials and tested according to ISO 4587.

Tensile Strength vs. Bond Gap

The final strength will depend on the bondline gap. The following table shows tensile shear strength developed after 72 hours cure on grit blasted steel lap shears at different controlled gaps and tested according to ISO 4587.

Bondline gap (mm)	% of Full Strength on Steel
0	100
0.125	90
0.25	60

TYPICAL PERFORMANCE OF CURED MATERIAL

Adhesive Properties

Cured for 24 hours @ 22 °C

Lap Shear Strength, ISO 4587: Steel (grit blasted) N/mm² 5

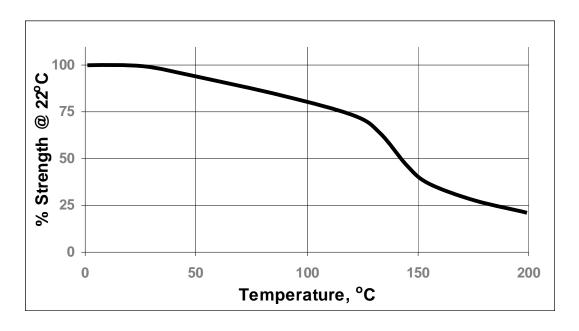
Lap Shear Strength, ISO 4587:

Aluminium N/mm²

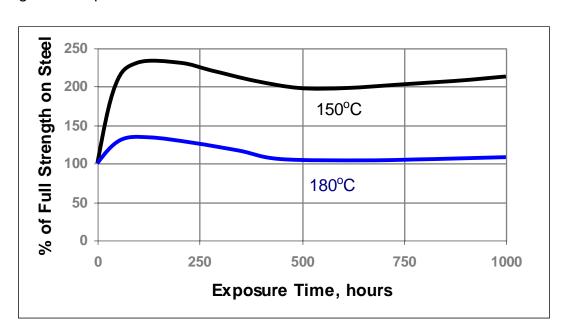
TYPICAL ENVIRONMENTAL RESISTANCE

The following tests refer to the effect of environment on strength.

This is not a measure of sealing performance.


Cured for 1 week @ 22 °C.

Lap Shear Strength, ISO 4587:


Steel (grit blasted)

Hot Strength

Tested at temperature

Heat Aging
Aged at temperature indicated and tested @ 22 °C

